mzuriCh ETH Library

Adaptive Kriging Strategy for Risk
Optimization with Time-Dependent
Reliability

Conference Paper

Author(s):
Kroetz, Henrique M.; Beck, André T.; Moustapha, Maliki (2); Sudret, Bruno

Publication date:
2019

Permanent link:
https://doi.org/10.3929/ethz-b-000338361

Rights / license:
Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://orcid.org/0000-0002-1138-4666
https://orcid.org/0000-0002-9501-7395
https://doi.org/10.3929/ethz-b-000338361
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

IFI P WG-7.5 Reliability and Optimization of Structural Systems T
2018 June 26-29, 2018 ETH Zurich, Zentrum I||"||I

Adaptive Kriging Strategy for Risk Optimization with
Time-Dependent Reliability

H.M. Kroetz and A.T. Beck
Structural Engineering Department, University of Sao Paulo, Av. Trabalhador Sao-Carlense,
400, 13566-590 Sdo Carlos, SP, Brazil

M. Moustapha and B. Sudret
Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Stefano-Franscini-Platz 5,
8093 Zurich, Switzerland

ABSTRACT

In structural design, increasing the safety of structural systems usually implies additional costs, and
sometimes cost savings can result in jeopardized safety. The Risk Optimization (RO) approach allows
the designer to account for these conflicting goals, but not much has been proposed for the solution of
such problems, particularly when the problem involves time-dependent reliability analysis. This paper
presents a novel strategy for solving time-dependent risk optimization for quasi-static problems. Two
coupled Kriging surrogates are employed to aid in the computationally heavy solution inherent to this
kind of problem. Different adaptive strategies are proposed, considering the particularities of each step
of the problem solution.

1 INTRODUCTION

In a competitive environment of scarce resources, it is important that structures are designed optimally.
Structural optimization is the tool that aids the engineers in this task. Increasing the safety of structural
systems usually implies additional costs, and sometimes cost savings can result in jeopardized safety.
The additional considerations regarded in such analyses may lead to excessive computational burden.
Hence the search for efficient approaches to solve such problems is an extremely important topic.

Two major approaches are usually considered in this context: Reliability-Based Design Optimization
(RBDO) (Frangopol, 1985), in which deterministic cost functions are subjected to reliability constraints,
and Risk Optimization (RO) (Enevoldsen and Sorensen, 1994; Aktas et al., 2001), where the cost is a
function that implicitly includes the probabilities of failure associated to the reliability problems involved
in the analysis. It is understood that RO leads to more comprehensive results, since costs associated to
the entire life-cycle of the structure can be considered. Moreover, RO results tend to be more general,
since the level of safety arises from the problem solution itself, as opposed to RBDO where the designer
must set a priori the level of safety (Beck and Gomes, 2012). In both optimization frameworks, the
determination of probabilities of failure is an important part of the solving procedure. This computation
in itself may already be associated with significant computational burden. When loads are described as
stochastic processes, or when the structural configuration changes with time, time-dependent probabil-
ities of failure must be accounted for, which adds complexity to the problem. Naturally, the solution
of such problems involves computationally intense tasks, and have not yet been thoroughly explored.
This paper aims to contribute to the study of Risk Optimization in the context of degrading structures by
providing a framework based on coupled adaptive surrogate models.
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2 RISK OPTIMIZATION PROBLEM STATEMENT

In a context where structural failures are undesirable, but unavoidably associated with a small probability
of occurrence, a comprehensive design approach should take into account the possible consequences of
failure. The Risk Optimization formulation considers different costs associated with the life-cycle of the
structure, including the expected cost of failure Crr, which reads:

Nis

Cer =Y P;,Cy,, (1
=1

where h = {1,...,N;;} denotes the limit state associated with a failure that occurs with a probability Pf}
and whose cost is Cy,. Design and reliability constraints can also be considered, so that the optimization
problem can be cast as:

d = inCr(d
argminCr (d), o
subjectto: B, >B,, h={l,...,Ns},

where
CT(d) :C[(d)+C[&M(d)+C0(d)+CEF(d) 3)

is the total cost associated to the design d. This cost can be broken down into Initial design costs
C;, Inspection and Maintenance costs Cygys, Operation costs Cp and the Expected cost of Failure Cgp
defined in Eq. (1). Since the probabilities of failure are directly considered in the objective functions,
constraints are often not necessary in this type of problem. In general, the reliability constraints are added
to enforce the consideration of standards. Bound constraints may also be included to limit the solution
domain to possible structural configurations, herein through the definition of the design space .

In general, to solve this problem, two simplifying assumptions are made. First, the inspection and main-
tenance costs are often neglected. In fact, even though many studies have already been conducted fo-
cusing on those cost terms, it seems to be a common practice to neglect them in Risk Optimization,
hence considering only initial and expected failure costs (Gomes and Beck, 2013) Aissani et al. (2014)
explains that the two inspection and maintenance costs can usually be regarded as deterministic whereas
the failure cost is particularly important, because it highly affects the optimal solution in an uncertain
context. The second aspect is the proper scaling of the cost with respect to time for structures whose life
cycle is expected to span over decades. In fact, the costs of failure cannot be treated directly over time,
since economic changes will affect the present value of money. One way to deal with this problem is to
discretize the structure lifetime, bringing all costs to present value considering discount rates over each
period (e.g. year discount rates), and considering the cumulative failure probabilities associated with
each given period (Saad et al., 2016):

Nis

PfChnCﬁm 4
Z”Zi i) €

CEY. is the expected cost of failure in present value, 1) is the discount rate, herein set to 1% per year, and
Py, and Cy, are respectively the cumulative probability and cost of failure of the A-th limit-state in year
n. In the remainder of this paper, instead of Eq. (1), Eq. (4) will be used to compute the expected cost of
failure in Eq. (3).

3 TIME-VARIANT RELIABILITY

Let X(¢f,®) be a set of M = p+ ¢ elements that represents the randomness of a mechanical prob-
lem. Material properties and geometric characteristics are typically described as random variables,

88



Adaptive Kriging Strategy for Risk Optimization with Time-Dependent Reliability

represented by X;(w), j = {1,...,p}. Loads can be modeled as random processes of time Xy (, ®),
k={p+1,...,p+¢q}. In this notation, ® stands for the outcome in the space of outcomes Q. Further-
more, for optimization problems, let d be a vector that gathers together all the system’s design parameter.
This vector may include parameters that describe moments of random variables, should tolerances on de-
sign dimensions be included in the analysis (Moustapha, 2016). Assume a structural limit state function
that denotes safe states if it is greater than zero and failure if it is smaller than zero. Thus the boundary
between desirable and undesirable structure responses is given by g(d,¢,X (¢, ®)), such that:

Dyd,t)={d,X(t,0):g(d,t,X(t,®)) <0} is the failure domain,

Dy(d,t)={d,X(t,0):g(d,t,X(t,0)) >0} is the safe domain. )

For a given limit state, the instantaneous probability of failure Py, at a time ¢ = 7 is given by:

Py(d:) =P (gld, 7 X(5.0) <0 = [ fx)d ©

where P (-) denotes the probability of the event and fx is the joint probability density function of all the
random variables for a configuration d at a time 7. In this work, we are rather interested in the so-called
cumulative probability of failure Ps.(t1,1;) which is defined for a given d as the probability of occurrence
of a structural failure within the time interval [f],1,]:

Pp(d;t),n) =P (3t € [11,r] : g(d,7,X(t,0)) <0) (7)

Different approaches have been suggested to compute Py.. The so-called out-crossing approach has been
widely used. Examples of well-known methods include the PHI2 approach (Andrieu-Renaud et al.,
2004) and the asymptotic PHI2 method (Sudret, 2008). The accuracy of such methods are however
impeded by the introduction of approximation methods such as first-order reliability method (FORM).
FORM is indeed known to lead to spurious results in presence of highly non-linear limit states and
multiple design points. Henceforth, an approach based on direct simulation is instead considered in this
paper. As will be shown in the sequel, this approach is coupled to surrogate modeling to lower the
computational burden.

3.1 Monte Carlo-based estimation of the cumulative failure probability

The basic idea is to sample trajectories of the limit-state function over a given time interval and then count
the number of such trajectories for which failure occurs. To achieve this, the random process of interest
is first discretized, i.e. represented by a finite set of random variables (Sudret and Der Kiureghian, 2000).
The discretization method employed in this work is the expansion optimal linear estimation (EOLE), as
presented by Li and Der Kiureghian (1993).

Let us consider a scalar Gaussian random process X (¢, @), with mean m(¢), standard deviation o(¢) and
autocorrelation coefficient function px(#1,t;). P time points are selected in the interval [0,.7], so that
t1 =0 and tp = 7. The EOLE expansion is then given by:

r

X(t,0) ~m(t) +o(r) Z‘T %ﬁ?

where {&;(®),i = 1,...,P} are independent standard normal variables, {¢;,A;,i = 1,...,r} are the eigen-
vectors and eigenvalues of the correlation matrix C sorted in decreasing order, with C;; = px (i,t;),i,j =
{1,...,P}. Note that here the expansion is truncated to r < P terms, the value of which defines the
so-called order of expansion.

¢/ Cr (1), (8)

Once a proper discretization is obtained one is able to draw trajectories of the limit state function
¢(d,t,X(t,)) in the time interval [0,.7], for a given d. This is done by considering both the EOLE
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expansions of the random processes Xi(f,®), k= {p+1,...,p—+q} and realizations of the time inde-
pendent random variables X;(®), j = {1,...,p}. In practice, the simulated values are stored in an array
G of dimension 1 x N, where N is the number of time instants in which the limit state equation is dis-
cretized. Each position i of this array corresponds to a time #; = (i — 1) - Af, where At = = is the
sampling step, assuming a uniform discretization. For each #;, consider a counter k; that is 1ncreased
every time g presents the first outcrossing in the interval [#;, ;11]. A brute Monte Carlo estimation for the
cumulative probability of failure is then given by:

PfcMC O tl - ka (9)

4 KRIGING A.K.A. GAUSSIAN PROCESS MODELING

When a complex computational model .# has to be evaluated a large number of times, the idea of
replacing it by a surrogate model, which mimics its behavior, but is far less expensive to evaluate arises.
The Kriging technique consists in approximating such expensive models through the realization of a
Gaussian process. In order to build it, a set of inputs and outputs of the model to be surrogated is
considered, so that it is viewed as a black box. This set is know as the design of experiments (DOE):

P ={(xi,yi): xi € RM yi = (x;),i=1..n} (10)

where n is the number of observations available in the DOE. The Kriging model is then written as
(Santner et al., 2003):

) A1) = Y. By ) 200 an

where B are coefficients to be determined, f(x) is a set of basis functions. Z(x) is a zero-mean, sta-
tionary Gaussian stochastic process, which will interpolate the known output information of the DOE.
It is defined by an auto-covariance function Cov [Z(x),Z(x')] = 62R(x,x'; 8), where R stands for auto-
correlation function with hyper-parameters @, and 6 denotes its variance. In this work, ordinary Kriging
is employed, i.e. p =1 and fj(x) = 1. The auto-correlation function is chosen to belong to the Matérn
5/2 family. The mean Kriging predictor reads:

ux)=frx)B+r" (xR (y—F"B). (12)

Here B = (F TR™'F ) “'FTR! y are weight coefficients obtained by least squares regression and F isa
matrix that gathers the basis functions applied to the DOE points, such that F;; = fj(x\?)), which reduces
to a column vector of ones in the case of ordinary Kriging. Since the predictor is a Gaussian process, it
is also possible to obtain its variance:

6;7(.1:) = o2 (1 —rT ()R 'r(x) +u! (x) (FTR_IF)_lu(x)) (13)

where u = (FTR™'F)"'F"R "'y and r(x) = [R(x,x,)...R(x,x,)]. With this information, it is possible
to evaluate the regions of the process where the prediction (Eq.12) is associated with lower or higher
uncertainty.

4.1 Efficient Global Optimization (EGO)

The Kriging model is built here in order to approximate the cost function in the optimization process.
The selection of an adequate DOE is crucial for this surrogate to provide sound results. In a context
where each evaluation of the total cost is expensive, or only a limited budget of observations is available,
the selection of an optimal DOE is necessary. Considering that the Kriging predictor provides not only an
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estimation for the actual value of the surrogated model, but also a measure of the uncertainty associated
to the prediction in that point, Jones et al. (1998) proposes an iterative way to concomitantly build an
optimal DOE and find the minimizer of the underlying function. A first Kriging model ./7° is built from
an initial dataset 2 = {(x;,y;),i = 1,...,m}. An improvement function /(x) is defined as the difference
between .#°(x) and ymin = min(y;), i = 1,...,m € 9, if positive, and 0 otherwise. The expected value of
I(x) leads to the so-called expected improvement function (Bichon, 2010):

- ) - Ymin — M ;7 (x) - Ymin — ”//i(x)

El(x) = (ymlnu%(x))d)((%(]c)) +G'///(x)(p<q/;(x)> (14)
where ¢ and @ are the standard normal PDF and CDF. This equation indicates how much the cost
function evaluated in a given point x is expected to be smaller than the current predicted minimum. The
next point to be added to the DOE, x,,, is the one that maximizes EI(x). Thus, a trade-off between
moving towards a minimum and exploring the regions associated with high variance is carried out. As
more points are iteratively added, x,,1| is expected to converge to the global optimum of a surrogate
which is precise in the region of more relevance to the optimization problem. Since u ,(x) should be
much faster to evaluate than ./ (x), one simple way to proceed is to define a large sample set (e.g. 10° or
10° samples ) on the space of the design variables [d;, d,], and evaluate the surrogate mean and variance
in every point. EI is then calculated for every point. The next point to enrich the DOE is the one with
the greatest E1.

4.2 Efficient global reliability analysis (EGRA)

Even with the employment of EGO, a time-variant risk optimization problem may still be computation-
ally intractable. In a more limited scope, where time-variant problems can be pointwise represented by
time-independent models (e.g. quasi-static problems), the limit state equations can also be easily surro-
gated, further improving the efficiency of the solution. In reliability problems one is mostly concerned
with the sign of a limit state function. Any configuration of a given problem which is associated to a
point that belongs to the failure domain Dy is considered infeasible, and the points in the vicinity of the
limit state equation are the only ones where a small error could lead to a misinterpretation of the failure
behavior. The different nature between a generic global optimization and a reliability analysis problem
has led to adaptations of the EGO approach, which is not very suitable for the latter problem. Seeking
for an optimum way of building a Kriging predictor that surrogates a limit state function, Bichon et al.
(2008) proposes the Expected Feasibility Function:

EF(x)=p ;(x) [m(!b/z(x)) _q,<—2%;(x) —M,//z(x)> _q)<2a//;(x) - )‘//Z(x)>]

o ;(x) o ;7(x) o (x
- i)\ ([ =20,(x)—py,(x)\ (20 ,;(x)—pz(x)
"/f‘“”[””(w;(x)) o( ) o (e )] (49
) 20 ;(0) =170\ L[ —20,;(x) —p;(x)
120,400 205 B ) o 2000 )]

Echard et al. (2011) makes use of a similar function to propose an iterative method, suitable for the
adaptive construction of a limit state function, the so-called Active Kriging - Monte Carlo Simulation
(AK-MCS). An initial Kriging model is built from a dozen points DOE, randomly selected from a larger
set of size N,,.. The predictor is evaluated in all these points, and EF is computed for all of them. The
next point to be added to the DOE is the one with the maximum expected feasibility. The probability of
failure is thus calculated performing a Monte Carlo simulation on the predictor.

5 PROPOSED FRAMEWORK

To sum up, a framework based on two coupled surrogate models is proposed in this work. In fact, the
optimization problem in Eq. (2) is solved using EGO, i.e. a Kriging model .#Z¢, that approximates
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the relationship d — Cr (d) is built adaptively with the ultimate aim of finding the optimal cost d”.
This is achieved here by Monte Carlo simulation as explained in Section 3.1. This task is actually
cumbersome and becomes untractable when the model underlying the limit-state function is expensive-
to-evaluate. In this paper, we restrict the application scope to quasi-static problems, hence allowing for
the metamodeling of the limit-state function independently of the stochastic loading. In practice, EGRA
is used to adaptively build a unique global metamodel .#¢ in the so-called augmented space following
Moustapha et al. (2016). The augmented space combines both the design and random variables space, so
that one single metamodel can be used to compute the failure probability regardless of the design choice.
Once that model is deemed accurate enough, herein when EF (Eq. (15)) is below a threshold set to 1074
for all the candidates to enrichment, it is used to compute the failure probability, henceforth the expected
cost of failure, a component of the total cost. Thus, the optimization is carried out by EGO, using the
surrogate models built by EGRA when a limit state function must be evaluated. The last point added in
the EGO enrichment procedure is the optimum sought.

6 EXAMPLES

6.1 Steel beam subject to corrosion

Consider a steel bending beam with length L = 5 m and rectangular cross-section {by, ho}T, which is
submitted to dead loads pgbohg (Nm~1), where pss = 78.5 kNm is the steel mass density, as well as a
pinpoint load F applied midspan.

corroded area

.f"lx-}_-'hl dAn=xKt J’ B

Ko +
f — o
o ZA *

0 sound steel
Figure 1: Corroded beam under a midspan load, after (Sudret, 2008)

The yield stress is denoted by f,. The beam is also subjected to corrosion, in such a way that the corrosion
depth d. all around the section increases linearly with time, i.e. d. = kt. Furthermore, it is assumed that
the corroded areas have lost all mechanical stiffness. The limit state function associated with the failure
related to a plastic hinge at midspan reads:

(b() — 2Kt) (hO — 2Kt)2fy (E + pstbOhOL2
4 4 8
where the yield stress is denoted by f,. The time interval under consideration is [0, 10] years. The
corrosion kinetics is controlled by k = 0.05 mm year~! . The load is modeled as a Gaussian random
process with mean 6,000 N, coefficient of variation 0.3 and with a Gaussian autocorrelation function with

correlation length A = 1 month. The random parameters are gathered in Table 1. The risk optimization
problem is defined by Eq. (17)

g(d,1,X) = ) (16)

Table 1: Corroded bending beam — random variables and parameters

Parameter Distribution Mean COV
Steel yield stress (MPa) Lognormal 240 10%
Beam breadth (m) Lognormal by 3%
Beam Height (m) Lognormal kg 3%

The initial costs are proportional to the cross section of the beam C; = %, and the failure costs are
considered to be 1,000 times higher, i.e. Cy = 1,000C;. The problem is to find d = {by, ho}T that
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optimizes the total cost Cr(d):
CrPre,
=C
’%72: (1+n)
s.t. 0.1 < by <0.5
0.01 < hp <0.06

a7

Since the cost function has very steep regions, and the costs are always positive, the analysis was car-
ried out considering the natural logarithm of the total costs. Figure 2 shows the contour plot of the cost
function and the evolution of the EGO enrichment. The initial DOE points are marked with red squares.
The subsequent points are shown by the yellow circles, and the optimum corresponds to the green di-
amond. The optimum obtained with the presented approach is d},ig = {0.1475,0.0569} . A Particle
Swarm Optimization (PSO) with 20 generations of 30 particles was also performed on the original prob-
lem, without the aid of surrogate models, to compare the results. The optimum point obtained with this
approach is dpg, = {0.1339,0.06}. The corresponding respective total costs are Cr(d,;,) = 1.08 and
Cr(dpgp) = 1.02, which are relatively close thus validating the results of the proposed method.

0.03

0.01 ' ' '
0.1 0.2 0.3 0.4 0.5

do

Figure 2: Convergence of log(Cr)

6.2 23-bar Plane Truss

Consider the truss composed by 23 bars and 13 nodes represented in Figure 3, subjected to time varying
loads applied on the upper nodes. The six vertical loads are modeled by a single stationary Gaussian
process with mean value 50 kN, standard deviation 7.5 kN and Gaussian autocorrelation coefficient
function with a correlation length of A = 1 year. There are two types of bars, with different cross-
sectional areas and materials, as indicated in Figure 3.

The bars are also subjected to uniform corrosion, with each dimension decreasing linearly in time, i.e.
d. = kt. The cross-section is considered to be square, so that it can be totally defined by A() = (lp —d..)?,
where Iy is the square root of the area in the beginning of the analysis, and k = 0.1 mm year~!. The
random variables of the problem are described in Table 2. The limit state equation is defined implicitly
by a finite element model, and is written in terms of the vertical displacement of the mid-span node,
herein denoted by V;. The serviceability of the truss is given by a 0.1 m allowed displacement of the
mid-span node :

g(d,t,X)=V,(d,t,X)—0.1. (18)
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Figure 3: Corroded beam under a midspan load, after (Blatman and Sudret, 2010)

Table 2: Corroded bending beam — random variables and parameters

Parameter Distribution Mean (e(0)%
E\(MPa) Lognormal 210000 10%

E>(MPa) Lognormal 210000 10%
Ai(ecm?)  Lognormal d; 10%
Ar (cm2 ) Lognormal d; 10%

The time interval under consideration is [0, 30] years, thus leading to the following formulation of the
risk optimization problem:

o CrPye,

S (1+n)”

s.t. 10cm? <d < 30cm?
10cm? < d < 30cm?

Cr=C+
(19)

The design costs are proportional to the volume of the structure, i.e. C; = 103 (dy +d3), and the cost
of failure is obtained as Cy = 1,000C;. The results of optimum cost for 10 analyses are summarized
in Figures 4 and 5. Except for one outlier, the methodology seems to provide consistent solutions. On
average, a total of 15 model evaluations was needed to reach a solution.

60 T
55+
% 507 |
8 L
45+

401

35¢ :

Figure 4: Optimum Costs
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Figure 5: Optimum Value for Design Variables

7 CONCLUSION

A new strategy for the solution of time-dependent risk optimization problems was proposed. Two levels
of adaptive Kriging models were applied. One analytical and one numerical example were studied,
with satisfactory accuracy and convergence. On the other hand, number of evaluations of the inner
surrogate model was found to be excessively large for this strategy to be applied in problems that combine
extremely low failure probabilities together with time series that requires a large number of discretization
points. Further studies are necessary in order to adequate the method to this kind of problems, and to
increase the scope of the solution to involve dynamic problems that cannot be represented by pointwise
surrogates of the limit state equations.
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